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Abstract

Cellular differentiation entails an extensive reprogramming of the genome toward the expression of discrete subsets of genes, whicl
establish the tissue-specific phenotype. This program is achieved by epigenetic marks of the chromatin at particular loci, and is regulated b
environmental cues, such as soluble factors and cell-to-cell interactions. How the intracellular cascades convert the myriad of external stimul
into the nuclear information necessary to reprogram the genome toward specific responses is a question of biological and medical interes
The elucidation of the signaling converting cues from outside the cells into chromatin modifications at individual promoters holds the promise

to unveil the targets for selective pharmacological interventions to modulate gene expression for therapeutic purposes.

Enhancing muscle regeneration and preventing muscle breakdown are important goals in the therapy of muscular diseases, cancer-associe
cachexia and aging-associated sarcopenia. We will summarize the recent progress of our knowledge of the regulation of gene expression |
intracellular cascades elicited by external cues during skeletal myogenesis. And will illustrate the potential importance of targeting the

chromatin signaling in regenerative medicine—e.g. to boost muscle regeneration.
© 2005 Elsevier Ltd. All rights reserved.
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The ultimate goal of pharmacological strategies in regen- regeneration—through highly selective interventions. As the
erative medicine is to achieve the desired effect—e.g. organexpression of particular subsets of genes determines the final
outcome of any cellular process, it is obvious that decipher-
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E-mail addresses: plpuri@dti.telethon.it, issue of critical importance. Understanding how the external
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structure at specific loci during lineage commitment, how with a particular emphasis on muscle regeneration and the
these modifications are maintained during mitosis, and how potential therapeutic opportunities derived from this infor-
do they promote the differentiation program, are questions mation.

of critical importance in biology, with obvious implications

in molecular medicine. Epigenetic marks are generated by

chromatin-bound protein complexes, which are endowed 1. The concept of signal delivery to the chromatin

with an enzymatic activity toward histones and DIA2]. and selectivity of pharmacological interference
The unique combination of different post-translational mod-
ifications of histones—including acetylation, methylation, As the environmental cues determine the extent of nuclear

phosphorylation, ubiquitination and ADP-ribosylation—at reprogramming during cellular differentiation, pharmacolog-
specific loci, defines the chromatin configuration, either ical interference with the signaling pathways, which deliver
repressive or permissive for gene expres§ddrnThe engage-  external cues to the chromatin, can be exploited to modulate
ment of chromatin-bound complexes on discrete sequenceghe differentiation program.
ofthe genome is governed, atleast in part, by external cues.In  An emerging concept that should be anticipated in this
this regard, there is an evident gap of knowledge on the mech-review is that the cellular level of intervention is likely to
anism by which intra-cellular signalling pathways convert provide the extent of selectivity in the pharmacological mod-
environmental cues into specific chromatin modifications. ulation of gene expression. For instance, blockade of the
The elucidation of the molecular basis by which the infor- membrane receptor or downstream cytoplasmic cascades that
mation transmitted by signalling cascades is deciphered bytransmit to the nucleus the information from outside the cell
chromatin-binding proteins and broadcasted to other com- often affects the expression of a broad range of genes, since
ponents of the transcription machinery will help to further receptor-activated pathways usually spread to a variety of
clarify the molecular pathogenesis of human diseases anddifferent promoterd4]. The selectivity of the interference
will possibly reveal new targets for pharmacological inter- would progressively increase by targeting events at the inter-
ventions aimed at selectively modulating gene expression. face between the signaling cascades and the transcription
In the following sections we will summarize and critically machinery Fig. 1). Thus, deciphering the unique “chromatin
discuss the current knowledge on the signalling that regulatessignature” generated by signaling cascades at individual pro-
chromatin structure and function during skeletal myogenesis, moters might provide important insight on the selectivity of

Receptor

R

Receptors

X Y R Z W

Signaling cascade network ’\

Level of intervention
Degree of specificity

SV \ \/

A B CDE
Promoter Targets

Hmgr -

Chromatin

Fig. 1. Selective modulation of gene expression by pharmacological interventions on receptor-activated chromatin signaling. Receutoneatietiéar
cascades deliver external cues to the chromatin via cytosolic signaling networks, which spread the signal to a broad range of promoters tdéheoordinate
expression of the genes involved in the cellular response. In this cartoon, two different models of intracellular signaling are envisionec|Lieft epool

(R) can trigger a linear signaling, which spread in the proximity to the nucleus—e.g. by targeting either different nuclear proteins (A, B andrCcterasne
protein (B) recruited to different promoters. Right model: receptor (R) is engaged together with other receptors (X, Y, Z and W). Cross talk between th
activated cascades establishes a complex signaling network that spreads the information to a variety of promoters, by targeting several rdoieetream
proteins (A, B, C, D and E). In both cases, selective modulation of either one gene or a restricted subset of genes can be achieved only by ifténkering wit
events in proximity to the promoter(s) of the gene(s) of interest. For instance, in both models models it is important to identify the event(r(éag. pa
phosphorylation pattern or promoter-specific chromatin-bound protein) that impart to B the information for recruitment to individual promoters.
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signal transduction pathways toward gene expression. Recenthe combination of pathways activated in response to locally
reports have begun to shed light on the signaling that reg- released inflammatory substances, on their timing of activa-
ulate the assembly of chromatin-modifying complexes at tion and on the cross-talk between cytokine-induced intracel-
particular promoter/enhancer regions during different cellu- lular cascades and additional pathways stimulated by growth
lar responses. factors[7]. These kinase pathways are propagated inside the
cells by phosphorylation cascades, which converge to the
nucleus and are integrated at the chromatin level to select
the genes to be expressed.

Tissue-restricted proteins contribute to confer the cell-type
specificity to extracellular-signal activated cascades. Basic
During skeletal myogenesis, precursors cells committed helix—loop-helix (bHLH) proteins of the MyoD-family are

toward the myogenic lineage proliferate as undifferentiated, exclusively expressed in skeletal muscle d@, and likely
mononucleated, myoblasts, in the presence of mitogens ormark the genomic regions where the signaling pathways con-
other anti-differentiation cues, and differentiate into multinu- verge. However, additional chromatin-associated proteins,
cleated myotubes upon the exposure to pro-myogenic signalswhich are preferentially expressed in muscles, could also
such as cell confluence, mitogen withdrawal and secretedcontribute to determine the cell-type specificity of the sig-
moleculed5,6]. naling elicited by environmental cues. Epigenetic chromatin
Chromatin modifications generated by external cues canmodifications are generated by protein complexes assembled
either be transient, to permit the transition throughout inter- on gene-regulatory elemenf29]. Sequence-specific tran-
mediate stages of lineage commitment, or permanent, whenscriptional activators recruit to their target elements several
an irreversible phenotype is established—e.g. terminal dif- co-regulatory factors, which are endowed with enzymatic
ferentiation. For instance, during muscle regeneration, the activity toward both histones and transcription factors, and
progression from muscle precursors to terminally differenti- are generally defined as to chromatin-modifying complexes
ated cells entails sequential changes of expression of differen{30]. Two families of transcription factors—the muscle reg-
subsets of genes in response to environmental[@lieSatel- ulatory factors (MRFs) MyoD, Myf5, myogenin, MRF4, and
lite cells define a population of quiescent, reserve cells, which the MEF2 family members, MEF2A to D, control the expres-
are activated in response to muscle damage, and are deputesion of muscle-specific geng&l]. Their stage-specific asso-
to repair injured myofiber$8,9]. These cells are exposed ciation with different transcriptional co-regulators ultimately
to locally released growth factors, hormones and cytokines, dictates the expression of genes implicated in the regulation
which coordinate the progressive stages of regeneration, fromof skeletal myogenesj82]. The interactions between MRFs,
the first rounds of proliferation to the fusion into myofibers MEF2 proteins and co-regulators are imparted by external
[7,10,11] Extrinsic cues elicit a number of intracellular sig- cues. In general, during myoblast proliferation, mitogens
naling pathways, which are evolutionary conserved and ubig- promote the association with transcriptional co-repressors
uitous to almost all cell typg4 2]. The combinatorial activity ~ to prevent the premature expression of muscle genes. Upon
ofthese pathways ultimately selects the genes to be expressethe exposure to differentiation cues, co-repressors dissociate
at each stage of muscle regeneration. Understanding howfrom MRFs and MEF2 proteins and are replaced by tran-
these pathways reprogram the genome in a cell-type specificscriptional co-activatorg32]. Recent studies have attempted
fashion is essential to devise strategies aimed at modulatingto elucidate the mechanism by which extracellular-signal
gene expression during regeneration. activated pathways control gene expression during skele-
The importance, and at the same time the complexity, of tal myogenesis, by regulating interactions between MRFs,
the environmental signals in the regulation of gene expres- MEF2 proteins and chromatin-modifying complexes.
sion during skeletal myogenesis is well exemplified by the
impact of inflammatory cues on muscle regeneration. In many
muscular diseases, myofiber degeneration is either caused. Chromatin signaling inducing lineage

2. Signal-dependent nuclear reprogramming during
muscle differentiation

or accompanied by an inflammatory respofik®. Locally
released inflammatory cytokines elicit intracellular path-
ways, which can either block or promote the myogenic pro-
gram. For instance, activation of NB- and JNK-pathways

by inflammatory cytokines represses the myogenic program,
whereas calcineurin and p38 signaling promote muscle dif-

ferentiation[14—22] Several inflammatory cytokines, like
tumor necrosis factor alpha (TN, and interleukin 1 (IL-1),
counter myotube formation and post-mitotic grof28—25]
while IL-4 promotes myoblast fusion into myofibel26].
The role of IL-6 in myogenesis remains unclg@r27]. It
is likely that the final effect of inflammation depends on

commitment in myoblasts

The expression of either MyoD or Myf5 establishes the
myogenic lineage during developmental and adult myogene-
sis[33,34] Consistently, ectopic expression of either protein
converts several cell types into myogenic c¢ls,36] The
modality of induction of MyoD expression in muscle precur-
sor cells has not completely been clarified. DNA methylation
at the regulatory sequences of MyoD gene precludes its
expression in non-myogenic cell lines, as the demethylating
agent 5-aza‘2deoxycytidine can induce expression of
MyoD in fibroblasts and convert them into myogenic cells
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[37]. The regulatory elements of MyoD include the core do MyoD and Myf5 confer and maintain the myogenic iden-
enhancer region (CER), driving cell-type and time-restricted tity to these proliferating muscle precursors, without activat-
gene expression, the distal regulatory regions (DRR), ing the differentiation program? A simplistic, former model
required for stable MyoD expression, and the proximal of inactivation of myogenic bHLH proteins in myoblasts
regulatory region (PRR), which contains the core promoter relies on serum-induced expression of the anti-myogenic
[38-40] Recent evidence indicates that the homeoprotein Id proteins, which sequestrate the heterodimeric partners of
Msx1 represses MyoD gene expression by recruiting the MyoD—the products of the E2A gene, E12 and E38%,55].
linker histone H1b to CER, thereby generating heterochro- This model assumes that in myoblasts MyoD is unable to
matin at this region and inhibiting transcriptipfl]. Msx1 bind its DNA-recognition sequences—the Ebox sites—onthe
was previously shown to repress MyoD expression, and is regulatory regions of muscle genes. However, early studies
highly expressed in immature myogenic precursors during could not address two critical issues relative to the DNA bind-
development and adult myogenefis42]. Thus, Msx1, in ing activity of MyoD in myoblasts: whether MyoD-MyoD
collaboration with histone H1b, determines the temporal pat- homodimers can be transiently recruited to the DNA during
tern of the myogenic identity by regulating MyoD expression. myoblast proliferation, and whether this transient interaction
The signaling controlling Msx1/H1b physical and func- is restricted to the promoter/enhancer elements of muscle-
tional interaction in muscle progenitors is unknown to date. specific loci, or might extend to other genes. The recent intro-
The expression of MyoD and Myf5 is controlled by the duction of the Chromatin Immunoprecipitation (ChIP) tech-
Wnt/Pax3-7 axis during developmental and adult myogene- nique provided a powerful tool to address these issues. ChIP
sis[43]. Different combinations of MyoD and Pax7 expres- studies have demonstrated the absence of MyoD on the reg-
sion define the final fate of satellite cells. Satellite cells that ulatory regions of most differentiation-related muscle genes
downregulate Pax7 and maintain MyoD expression are able toin myoblast§56—-59] However, Mal and Harter have shown
differentiate, while those cells that downregulate MyoD and that MyoD can occupy the myogenin promoter in myoblasts
maintain Pax7 expression do not differentiate, and are des-[60]. This discrepancy mightin principle result from different
tined to replenish the satellite cell pool available for further conditions of myoblast culture. We have noticed that cultur-
regenerative responsgkl,44] The Wnt family of proteins ing myoblasts at low confluence is strictly required to obtain
includes secreted molecules, which establish a signaling net-a homogeneous population of undifferentiated myoblasts.
work regulating muscle development by binding to G-protein By contrast, cellular confluence triggers pro-myogenic sig-
coupled-receptor related Frizzled proteins, and control the nals (e.g. p38 activation) that promote myogenin expression,
transcription of target genes, by promotiBgatenin nuclear  despite the presence of serum and without morphological
activity [45,46] Recent studies have identified CREB as a features of differentiation; ChIP of myogenin promoter in
novel nuclear target of the Wnt pathwgdr]. They reported  these conditions shows that MyoD occupies myogenin pro-
that mice deficient for either the activity or the expression moter (SF and PLP unpublished). Alternatively, association
of CREB show an impaired expression of Pax3, MyoD and of MyoD with class | histone deacetylase HDA(41,62]
Myf5. CREB-responsive elements are located on the reg- could weaken MyoD binding to DNA, since acetylation
ulatory sequences of Myf7], and the acetyltransferase increases the affinity of MyoD for Ebox sit¢83]. There-
activity of the CREB-binding protein p300 is required for fore, MyoD—HDAC1 complex can be detected by ChIP on
the myogenic lineage commitment, as embryonic stem (ES) myogenin promoter in low-stringency conditions ofimmuno-
cells homozygous for a p300 acetyltransferase mutant or aprecipiation.
p300 null fail to activate Myf5 and MyoD transcription effi- Chromatin recruitment would explain the function of
ciently, despite the presence of the upstream activator Pax3MyoD in the nuclei of undifferentiated myoblasts, as the
[48]. MyoD is also induced in myoblasts, via serum response determinant of the myogenic lineage. In this respect, the
factor (SRF), by the activation of non-canonical Wnt path- overall assumption is that transient recruitment of MyoD
ways, such as the GTPase Rhg®]—a master regulatorin  to specific loci somehow marks discrete chromatin spots to
the decision to commit mesenchymal cells toward the myo- prime myoblasts for the differentiation-associated nuclear
genic rather than the adipogenic lineage in response insulinreprogramming. Alternatively, or in addition, chromatin
and IGF1[50]. Insulin activates CREB in several cell types recruitment of MyoD in myoblasts, in association with
[51,52] Interestingly, insulin-activated signaling and Wntl HDAC1, could generate transcriptionally silent regions—
cooperate to induce MyoD expression and activity in cultured heterocromatin—to restrict the repertoire of transcribed
muscle reserve cells, via phosphorylation-dependent GSK-3genes to those specific to the myogenic lineage.
inhibition [53]. It will be interesting to elucidate the indi- Recent studies have begun to shed light on this issue. Blais
vidual contribution, if any, of the insulin/IGF1, Wnt/CREB et al. recently reported a number of MyoD target genes in
and Rho signaling in reversing MSX1-dependent inhibition myoblasts by exploiting a combination of ChIP on ChIP and
of MyoD expression and activating p300 acetyltransferase in micro-array analysi$64]. In this study, some of the genes
satellite cells. bound by MyoD in myoblasts were also bound in myotubes.
The presence of the bHLH proteins MyoD and/or Myf5 However, itis unknown whether these genes are actually acti-
in the nucleus of myoblasts poses a fundamental issue: howated by MyoD at both stages. Very few genes occupied by
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MyoD in myoblasts were found downregula{éd]. As such, myoblasts and myotubes found by Blais et[@4]. MEF2

itis possible that MyoD operates in myoblasts both by mark- proteins are typical genes induced by MyoD in myoblasts,
ing the promoters for subsequent activation upon exposure toand collaborate with MyoD at the stage of myotube forma-
proper cues and by inducing the expression of factors, whichtion [69,70] MyoD targets in differentiating muscle cells

in turn collaborate with MyoD to convert “marked” promot- are muscle-specific genes, often regulated by both Ebox and
ers from a “poised” to an active state. MEF2 sited31]. Recent results from Tapscott lab provide an

Some of the MyoD targets identified by Blais et al. in interesting model in which MyoD, MEF2 and p38 establish
myoblasts are genes with unanticipated function in myo- a feed-forward circuit to promote differentiati¢r0]. Other
genesis. As expected, they did not include any of those examples of MyoD target genes in myoblasts that cooperate
muscle genes typically expressed upon induction of dif- with MyoD (and other MRFs) during myotube formation,
ferentiation; rather, a number of transcription factors were are Six1, SRF and nuclear receptf#d]. It remains to be
found to be MyoD targets in myoblasts. These genes might clarified the sequence and molecular modality of MyoD-
collaborate with MyoD, and other MRFs, to amplify the dependent gene transcription at different myoblast stages.
myogenic signal, as differentiation proceed. In a previous None of the studies reported so far have discriminated the net-
study, Wyzykowski et al., using conditional expression of work of gene expression in actively proliferation myoblasts
MyoD, showed that the 1d3 and NP1 (neuronal pentraxin vs myoblasts committed to differentiate. It will also be impor-
1) genes become transcriptionally active following MyoD tant to elucidate the signaling cascades that regulate MyoD-
induction in undifferentiated myoblasf§5]. Activation of dependent induction of target genes at different stages of
Id3 and NP1 represents a stable, heritable event that does namyoblast progression from proliferation to differentiation,
rely on continued MyoD activity and is not subject to nega- and in particular to understand if the activity of MyoD homo-
tive regulation by activation of mitogen-activated pathways dimers and MyoD-E12/47 hetero-dimers is controlled by
[65]. different signaling cascades.

It remains unclear how MyoD can induce transcription The importance of the presence and continuous activity
of target genes regulated by conventional Ebox sites in of MyoD in the nuclei of undifferentiated muscle cells
myoblasts, considering that at this stage the inability of might explain some biological differences (e.g. the different
MyoD to form hetero-dimers with E12/47 precludes the bind- substes of muscle genes inhibited in response to p38
ing to canonical DNA Ebox sites and that MyoD can form inhibition) observed between cultured myoblasts and fibrob-
homodimers in vitro. It is possible that in myoblasts MyoD lasts converted by MyoD fused to the estrogen-receptor
can form homodimers and activate transcription of different (MyoD-ER) [17-19,56] In these latter cells, MyoD is
clusters of genes than in myotubes, through unconventional,confined to the cytoplasm of fibroblasts until estrogens
unknown mechanism. For instance, particular chromatin con- are added to the mediuffr1]. This system provides an
formation could be conferred to the regulatory regions of excellent model of synchronization of MyoD-dependent
MyoD target genes in myoblasts by specific combinations transcription, suitable to study the temporal pattern of
of DNA-binding proteins on sequences flanking the Ebox MyoD-mediated activation of muscle genes in repressive
sites, thereby allowing the promoter accessibility of MyoD chromatin of non-muscle cells. However, it minimizes the
homo-dimers. Recently, Berkes et al. provided an interest- impact of MyoD activity in the nuclei of undifferentiated
ing model of MyoD recruitment to the chromatin of target myoblasts, and the possible proliferation-associated changes
genes (e.g. the myogenin promoter), via interactions with the in chromatin structure at loci that will be activated during
homeodomain proteins Pbx, which is constitutively bound differentiation.
to this site[66]. According to this model, Pbx would pen- In keeping with the possibility that in myoblasts MyoD
etrate repressive chromatin at the myogenin promoter andprepares the chromatin for subsequent re-programming,
mark specific genes for activation by My@&r]. An indirect but does not activate muscle-gene transcription, one would
recruitment of MyoD on promoters of genes induced during predict that mitogens, which promote myoblast prolifera-
muscle differentiation was also proposed by Magenta et al., tion, inhibit MyoD-dependent activation of differentiation
who reported MyoD recruitment on pRb promoter through genes, while tolerating MyoD binding to the chromatin.
CREB-responsive elements (CREB]. Thus, specific com- A number of redundant mechanisms of MyoD inactivation
binations of proteins recruited at the regulatory regions of by mitogenic cascades in myoblasts have been described
MyoD-target genes in myoblasts could promote transcription [72—74] Mitogen-activated signaling pathways, such as the
of MyoD downstream transcription factors, which willinturn  Ras/Raf/MEK1/ERK signaling and Src-activated pathway
collaborate with MyoD—-E12/47 hetero-dimers to activate the repress MyoD ability to activate muscle gene expression in
expression of differentiation-specific muscle genes at subse-myoblasts without altering its DNA binding activify5—78}
quent stages of differentiation. These MyoD “downstream During proliferation MyoD stability in myoblasts is reg-
collaborator genes” are induced in differentiation-committed ulated by mitogen-induced cyclins/cdkl and 2, via direct
myoblasts, prior to their phenotypic differentiation, and could phosphorylation of serine 200, which prevents accumulation
persist along the whole process of differentiation. This model of MyoD before mitosis[79-81] Although an ubiquitin-
could explain the overlapping class of MyoD target genes in dependent degradation of MyoD has been descr[B&{l
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the biochemical relationship between serum-dependent phosMRFs [32]. An indirect action of mitogen-activated cyclin-
phorylation, ubiquitination and cell cycle turnover of MyoD cdks can be envisioned via hyperphosphorylation of pRb,
has not been definitely established. Likewise, Myf5 stability which prevents interactions with class | HDACs, thereby
is regulated by cdk-dependent phosphorylation, although atfavoring MyoD—HDAC1 association in myoblag2]. As
different cell cycle phases than MydB3]. Thus, regulation hypoacetylated MyoD and MEF2 proteins have impaired
of MyoD and Myf5 expression at the protein level ensures cell ability to bind their recognition sitg63,92], it is still unclear
cycle-dependent fluctuations of these proteins in myoblasts,if HDAC-containing complexes can stably bind the DNA at
allowing their proliferation, while maintaining the myogenic specific binding sites.
identity. Arecentreport by Caretti et al. begun to shed new light on
Stress- and inflammation-induced cascades, such@BNF muscle gene repressi@®B]. They showed that in myoblasts
and JNK signaling pathways also contribute to silence MyoD the chromatin of several muscle genes adopts a repressive
in myoblastg14,15] Activation of NFxB by TNF is suffi- configuration for transcription, via the recruitment of the
cient to promote MyoD RNA degradatidgt4]. Elimination histone lysine methyltransferase Ezh2, a component of the
of MyoD in myoblasts can potentially erase the myogenic Polycomb PRC2 and PRC3 complexes, which silences tran-
lineage. Thus, the regulation of MyoD levels in satellite scription by di- and tri-methylation of lysine 27 of histone 3
cells exposed to inflammation cues might have important (H3-K27) [93]. Interestingly, Ezh2 is recruited to the chro-
implications in the maintenance of the myogenic lineage matin of muscle regulatory regions via interaction with YY1,
of muscle progenitors and affect the extent of regeneration which recognizes CarG-box motifs presented in promoter
[84-86] regions of muscle genes. Further association with HDAC1
forms arepressive complex, which ensures repression of tran-
scription and prevents MyoD bindingig. 2A). At the onset
4. Silencing premature transcription of muscle genes of differentiation, the simultaneous down-regulation of Ezh2
in myoblasts and HDACL proteins, and the replacement of YY1 with SRF
[58], allows the binding of MyoD-E12/47 and the recruit-
Despite the presence of MyoD and Myf5, and their activ- ment of the positive co-activators, to form an active myo-
ity in lineage determination and maintenance, the expres-genic transcriptosome. The intracellular signaling that gov-
sion of muscle genes typical of the differentiated pheno- erns these interactions on muscle-gene regulatory sequences
type is silenced in myoblasts. Moreover, transcription of remains unknown to date. It is likely that pathways converg-
differentiation-specific muscle genes is temporally regu- ing on post-translational modifications of YY1, SRF and on
lated, with a sub-set of early genes being transcribed beforethe regulatory sequences of HDAC1 and Ezh2 regulate the
clusters of late-muscle gengs6]. Interestingly, even after  chromatin switch from repressive to permissive for transcrip-
the differentiation program is initiated, MyoD binds to the tion, at muscle loci.
promoters of muscle genes that have not been expressed Itis interesting to note that in myoblasts lysine 9 methyla-
yet (e.g. late genes), suggesting that MyoD-dependenttionand class Il HDACs were detected on myogenin promoter
silencing can regulate temporal regulation of muscle-gene [60,90], but not on muscle creatine kinase (MCK) and myosin
transcription. heavy chain (MHCIIb) promoters/enhancer sequelfisgk
In myoblasts, muscle-gene expression is silenced by inter-whereas lysine 27 di- and tri-methylation and HDAC1 were
action between MRFs and MEF2 proteins with nuclear only detected on MCK enhancer and MHCIIb promoter
deacetylases (HDAC$32,61,62,87—90]0n myogenin pro- [58]. Lysine 9 and 27 methylation creates docking sites
moter, MEF2 proteins associate with class Il HDACs4, for recruitment of different co-repressory complexes—e.g.
5, 7 and 9, leading to chromatin condensation, via his- HP1 and Polycomb Repressive Complex 1, respectively, to
tone deacetylation and recruitment of co-repressory com-ensure gene silencing. The distinct pattern of HDAC distribu-
plexes, such as heterocromatin protein 1 (HP1) and associatedion and lysine methylation at regulatory sequences of early
methyltransferases, which promote H3 lysine 9 methylation (myogenin) versus late (MCK and MHCIIb) muscle genes
[90]. Furthermore, class I HDACs potentiate SUMO2-and 3- suggests that discrete pathways regulate the timing of gene
dependent sumoylation at the C-terminal activation domain repression/de-repression during the myogenic program.
of MEF2D and MEF2C, leading to the inhibition of tran- Inhibition of MyoD-dependent transcription can also be
scription[91]. MyoD associates with class | HDAQG1,62] exerted by anti-myogenic proteins, which are abundant in
While the signaling responsible for HDAC dissociation from proliferating myoblasts (e.g. EID | and 294-96] or are
MyoD and MEF2 proteins has been at least in part elucidatedinduced by certain growth factors (e.g. TwigY], via inacti-
(see section below), the intracellular pathways promoting vation of p300 and PCAF acetyltransferaf@s98] Finally,
interactions among these proteins in myoblasts are unknown.muscle-gene transcription can also be silenced by DNA
Itis predictable that anti-myogenic factors, such as mitogens, damage-activated signaling, to ensure that DNA lesions are
somehow induce these interactions. Class | HDACs can berepaired before differentiation proced@s], thereby provid-
phosphorylated and sumoylated, suggesting that these posting a “differentiation checkpoint” that avoids the formation
translational modifications can regulate their association with of genetically unstable myofibef$00].
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5. Chromatin signaling to reprogram myoblast ment of negative regulators of transcription, such as HDACs
nuclei toward terminal differentiation and lysine methyltransferases, and the removal of repressory
modifications on histone residues, such as lysine methyla-
The dramatic changes in chromatin structure occurring at tion; the second entails the recruitment of transcriptional
the onset of differentiation reflect the fluctuation of extra- co-activators Fig. 2B). While it is still unknown whether
cellular cues that regulate myoblast to myotube transition these events are temporally separated or occur simultane-
[101]. ously, anumber of studies have identified individual signaling
The repressive conformation of the chromatin of muscle- cascades that govern these processes.
gene promoter/enhancer regions, imposed by co-repressor The bHLH proteins MyoD and Myf5 have the unique abil-
complexes, implies that at least two critical events have to ity to initiate the myogenic program by promoting chromatin
occur in order to initiate the myogenic program upon expo- remodeling at previously silent [0€102]. The exposure to
sure to differentiation cues. The first consists in the displace- pro-myogenic cues favors the hetero-dimerization between
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Fig. 2. Chromatin and chromatin-interacting proteins at muscle-regulatory genes in the repressed (A) or activated (B) conformation. (A) Myabd MEF2
YY1 recruit to the chromatin of silenced muscle genes co-repressory complexes containing nuclear deacetylases (HDACs) and methyltrandtetz®es (e.
which prevents local hyperacetylation and promote di- tri-methylation of specific lysines (e.g. K9 and K27) to generate a chromatin confonressior rep
transcription of target genes. Differentiation-activated CaMK pathway and increasing levels of unphosphorylated pRb (resulting from theithicgeal)
displace deacetylases from the chromatin and allow hyperacetylation by acetyltransferases (see B). The differentiation-induced sigrsil(e) fiasihe
displacement of YY1 and methyltransferases, as well as for removal of lysine methylation is unknown. (B) After (or simultaneous to) the displacement
co-repressory complexes and chromatin marks, the assembly of the myogenic transcriptosome entails the recruitment of several complexeshendowed wi
distinct enzymatic activities—acetyltransferases, ATP-dependent chromatin-remodeling complexes, arginine methyltransferaseatififfactutited p38
kinases regulate several steps of the transcriptosome assembly, by targeting transcription factors (MEF2), hetero-dimer partners (E4KfFacah§Whénts
(BAF60) by direct phosphorylation. p38 kinases can also regulate the stability of the nascent RNA. Acetyltransferase recruitment to musgitageype re
regions does not appear to be dependent of the p38 pathway, and is likely regulated by a differentiation-activated parallel cascade. Each nétite compo
recruited into the myogenic transcriptosome is essential to confer the competence to activate transcription.
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muscle-specific bHLH proteins and the ubiquitous HLH muscle-gene expressii#8,108,113]The acetyltransferases
products of the E2A gene, E12 and Ef£B,54], and stim- PCAF and p300 acetylate MyoD on three evolutionary con-
ulates the dissociation of nuclear deacetylases from MRFsserved lysines (K99—-K102 and K104), and this acetylation
and MEF2 protein$32]. A number of signaling pathways is a critical event to activate MyoD-dependent transcription
elicited during muscle differentiation contribute to the acti- of muscle genef3,114,115] MyoD acetylation increases
vation of the myogenic program by promoting muscle-gene during the transition from myoblasts to myotubes, and hyper-
expression. An important pathway that stimulates muscle acetylated MyoD displays higher affinity for its DNA-binding
differentiation is the calcium/calmodulin-dependent protein consensus motif—the Eb¢&3]—and for the bromodomain
kinase (CaMK)-mediated pathway. Differentiation-activated of p300 [116]. Recent studies from Dilworth et al., who
CaMK | and IV phosphorylate class Il HDAC members exploited an “in vitro transcription system”, demonstrate that
on conserved serine residues to stimulate interactions withthe acetyltransferase activities of p300 and PCAF are not
the chaperon protein 14-3-3, thereby disrupting the asso-redundant, with p300-dependent acetylation of histones pre-
ciation between HDACs and MEF2 proteins and exposing ceding promoter recruitment of PCAF; and PCAF-dependent
the nuclear export sequences in the C-terminal of HDACs acetylation of MyoD being necessary for transcripfibh7].
[32,88,89] As result, class Il HDACs translocate to the MEF2 proteins also interact with p3Q007], and their acety-
cytoplasm, and MEF2 becomes competent to activate tran-lation at multiple lysines is essential for DNA binding and
scription. It is likely that additional kinases regulate class Il transcriptional activity{92]. The recruitment of p160 pro-
HDAC interactions with 14-3-332]. Moreover, CaMK sig- teins appears instead to be mediated by individual interactions
naling disrupts class Il HDAC-HP1 binding independent of of p/CIP and SRC1A with Myo[J111] and GRIP1 with
phosphorylation-mediated 14-3-3/HDAC interactid@$]. MEF2 [109]. Likewise, CARM1 selectively interacts only
And CaMK and extracellular signal-regulated kinase 5 sig- with MEF2 proteing110]. Finally, a chromatin-remodeling
naling pathways prevent MEF2 inactivation by sumoyla- activity associated to the myogenic transcriptosdi@?]
tion [91]. Recently, it has been reported that the interferon- is provided by the recruitment of the ATPase-dependent
relate |l developmental regulator 1 (IFRD1) protein PC4 coun- SWI/SNF chromatin-remodeling complexdd.2].
ters HDAC4-mediated inhibition of MEF2C, by displacing How do intracellular pathways coordinate the asse nbly
HDAC4 from MEF2C[103]. By contrast, HDAC1 repression of the myogenic transcriptosome? Is each of the events
of MyoD is relieved by an indirect mechanism. The con- leading to the transcriptosme formation controlled by dis-
comitant decline of HDAC1 levels and the down-regulation tinct signaling cascades? Mitogen-activated cascades pre-
of cyclin/cdk activity in respon:s;e to the absence of mito- vent MyoD—E12/47 heterodimerization via induction of Id
gens, leads to the accumulation of hypo-phosphorylated or other mechanisni29,54,55,118,119hnd serum-induced
pRb, which has higher affinity for HDAC1, and displaces cyclinD-cdk4 prevents the association between MEF2 and
it from MyoD [62]. The interplay between YY1l-associated GRIP1 into punctate nuclear sub-domah®0]. It is likely
co-repressors and SRF-mediated recruitment of M{&f) that other extracellular-signal activated kinases regulate inter-
has been described above. Importantly, along with the dis- actions between the components of the myogenic transcripto-
placement of co-repressory enzymes, it is necessary to eraseome by direct phosphorylation. MRFs, MEF2 proteins and
the epigenetic modification generated by these enzymes, inp300 are regulated by a variety of kinases, and their phos-
order to reset the chromatin for differentiation-related nuclear phorylation pattern changes along with the cell cycle and
reprogramming. This is particularly true for lysine methyla- terminal differentiatio{29,121-123] However, the contri-
tion; thus, differentiation-activated signalingislikely to direct bution of individual pro-myogenic cascades in regulating the
the erasure of epigenetic silencing either via recruitment of interactions and the activity of these proteins has begun to be
de-methylases or by histone variant exchajgje elucidated only in the last years. Two independent cascades,
The sub-sequent recruitment of the acetyltransferasesthe IGF1-activated Pi3K/AKT signaling and the MKK6/p38
p300/CBP, PCAF, GRIP, p/CIP, SRC1A, the arginine- pathway, exert a critical role in promoting the activity of
methyltransferase  CARM1, and the ATPase-dependentMRFs and MEF2 proteingl7—20,124,125]Although these
SWI/SNF chromatin-remodeling complexes, endows the two pathways are activated by distinct stimuli and proceed
myogenic transcriptosome with the enzymatic repertoire nec- as parallel cascadg49], they are not functionally redun-
essary to modify the nucleosome structure and initiate the dant, as inhibition of either pathway is sufficient to prevent
transcription of target geng$04—112] The recruitment of  muscle-gene expressidt7—20,126—128]suggesting that
these co-activators on the regulatory regions of muscle geneghey converge on chromatin elements to regulate discrete
is mediated by distinct interactions with MRFs and MEF2 steps of the transcriptosome assembly.
proteins. For instance, both MyoD and MEF2 proteinsrecruit ~ The identity of the proteins targeted by these two pathways
the acetyltransferases p300/CBP and PCAF by direct physi-is only partially defined. MEF2 are activated via direct phos-
cal interactions mapped on distinct regi¢h84—108] Func- phorylation by the p38 kinases, which trigger their transcrip-
tional and genetic inactivation of p300 and PCAF is sufficient tional activity[18,19,70,129-133p38«/p kinase activity is
to block the formation of differentiated myotubes, although also required for SWI/SNF recruitment by MyoD and MEF2
these studies reported different levels of interference with proteins to the regulatory regions of muscle geitgs134]
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Interestingly, p38 blockade does not affect the DNA bind- cycle during muscle differentiation. Indeed, activation of p38
ing of MRFs and MEF2 and the recruitment of p300 and kinases by ectopic expression of MKKGEE causes cell cycle
PCAF, as well as their enzymatic activif§7], suggesting arrest in skeletal and cardiac myocy{ég0,141] And the
that a parallel pathway regulates these events. Insulin- androle of p38 in the control of cell cycle arrest has been also
IGF1-activated Pi3K pathway is a candidate regulator of the reported in response to other stimuli, like stress and DNA
assembly of acetyltransferases with MyoD, as in neuronal damagd143,144]
cells the Pi3K downstream Akt1/2 kinases promote the inter-  Several lines of evidence indicate that p38 targets mul-
actions between the bHLH protein NeuroD and neurogenin tiple components of the myogenic transcriptosome. p38
with p300 and PCAF135]. kinases directly regulate MEF2 function by phosphoryla-
Dynamic interactions between chromatin-associated pro- tion of all four member$129-133] and indirectly promote
teins at the regulatory sequences of muscle genes are noMyoD-mediated transcription by stimulating MyoD hetero-
restricted to the initial stages of differentiation, but extend dimerization with E47, via phosphorylation of this latt&®].
to later stages of myotube formation, to regulate chromatin Interestingly, p38-dependent phosphorylation of E47 has dif-
structure and gene expression in response to metabolic anderent effects on MyoD function depending on the stage
electrical stimuli. For instance, the NAD+-dependent histone of cellular differentiation and the environmental context. In
deacetylase Sir2 forms a complex with PCAF and MyoD to myoblasts, p38-mediated phosphorylation of E47 is stimu-
inhibit muscle-gene expression in response to redox changedated by serum activated Raf-MEEK1, and results in the inhi-
[136]. Radical oxygen intermediates are likely mediators of bition of E47-dependent transcripti¢b45]. This inhibition
this pathway. Furthermore, Mejat et al. showed that mus- might have a possible function in restricting the myogenic lin-
cle innervation by pre-synaptic neurons controls chromatin eage by impairing E12/47-dependent transcription of genes
acetylation of the myogenin gene by regulating MEF2 inter- specific of the B cell lineagd 46]. Since in myoblasts MyoD
actions with HDAC9 and class | HDAGQ437]. binding to E12/E47 is inhibitefb5], it can be assumed that
MyoD is spared by the control of p38 kinases at the myoblast
stage. Conversely, when p38 is activated by differentiation-
6. p38 signaling regulates multiple steps of related cues—that is in the absence of mitogens—p38-
muscle-gene expression mediated phosphorylation of E47, at serine 140, occurs in
conditions permissive for MyoD/E47 hetero-dimerization,
p38 kinases are the effectors of a master regulatory path-and further stimulates this procel&®]. It remains unclear
way of myogenic differentiation. Although it is assumed that from these studies whether E47 phosphorylation occurs on
MKK6 and MKKS3 are the physiological activators of p38 the same residues in myoblasts vs myotubes. Interestingly,
kinases in response to differentiation cues, the upstream reg-CDO, an Ig superfamily member activated by cell-to-cell
ulators of p38 during skeletal myogenesis have not precisely contact, promotes hetero-dimer formation between MyoD
been identified. It is known that HMGB1, a chromatin com- and E12/47, most likely by inducing hyperphosphorylation
ponent released by necrotic cells during inflammali88], of E-proteins[147]. It will be interesting to know whether
induces p38 signaling in myoblasts via RAGE-independent CDO mediates the activation of p38 pathway in response
pathway[139]. Importantly, when p38 is induced in the con- to cellular confluence. As myogenic bHLH and MEF2 pro-
text of differentiation-unrelated cellular responses (e.g. by teins synergistically activate muscle-gene expression, it is
certain inflammatory cytokines, stress, mitogens), it fails to conceivable that p38 promotes the transcription of muscle
promote differentiation or even inhibits the myogenic pro- genes also by targeting a common regulator of these pro-
gram (140, and PLP unpublished results). Functional block- teins. The demonstration that pa8and B kinases direct
ade of p38 kinasea and 3 in myoblasts induced to dif- the recruitment of the SWI/SNF complex on muscle-gene
ferentiate, is sufficient to inhibit the transcription of most regulatory regiong57] has provided a direct link between
muscle genes and prevents myoblast fusion into myotubesextra-cellular signal activated kinases and chromatin remod-
[17-19,140] Deliberate activation of p38 kinases by the con- eling [148]. p38-dependent recruitment of SWI/SNF corre-
stitutive active form of the upstream activators, MKK3 and lates with the engagement of hyper-phosphorylated, active
MKK®6, enforces premature differentiation in myoblasts cul- Polll holoenzyme to muscle-gene promotgsg]. As poly-
tured in the presence of serum mitogéh8,19,140] This merase Il holoenzyme contains SWI/SNF components, p38-
remarkable property the p38 pathway is unique among the mediated recruitment of Polll could be either a consequence
other intracellular cascades, and implies that active MKK3/6 of SWI/SNF phosphorylation or an independent event. The
can initiate and sustain the whole differentiation program, ability of p38 kinases to recruit chromatin-modifying com-
including all the steps leading to the formation of the tran- plexes, such as SWI/SNF, to their target promoters in
scriptosome. It remains to be defined if this effect occurs by response to environmental cues is not unprecedented. In
direct action of MKK3/6-activated p38 kinases on chromatin- yeast, the p38 functional homologous, Hog1 kinase, activates
binding proteins, or if the ectopic activation of this pathway ATF/CREB-dependent transcription, in response to osmotic
in myoblasts triggers parallel, cytosolic pro-myogenic path- stress, by favoring the recruitment of SWI/SNF to osmotic-
ways [142]. p38 also participates to the regulation of cell inducible promoter§l49]. Interestingly, both p38 and Hog1
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have been detected on the chromatin of target promoters keeping with the notion that MyoD—E47 interactions only
associated with Poll[57,70,149] And physical interactions  occur upon activation of the p38 pathway, it is possible that
have been described between Hogl and p38 with Polll andMyoD-E12/47 hetero-dimer formation is required for inter-
general components of the transcription machif&bp]. action with SWI/SNF. MEF2 also interact with SWI/SNF
One mechanism by which p38 recruits SWI/SNF to target [59,134] and this binding could take place independent of
promoters can rely on direct phosphorylation of the struc- MRFs, and could be regulated by p38-dependent phosphory-
tural SWI/SNF sub-unit BAF6(67]. BAF proteins provide lation of both SWI/SNF and MEF2 proteins.
the surface for interactions between SWI/SNF and sequence- The p38 pathway regulates expression of muscle genes
specific transcription factofl51-154] The heterogeneity also by direct phosphorylation of additional regulatory
and cell-type specific distribution of SWI/SNF structural proteins. p38-mediated phosphorylation of the p160 myb-
BAF sub-units can account for the specificity of the SWI/SNF binding protein (p160-MBP), a repressor of the PPAR
recruitment at discrete loci in response to external signals in coactivator 1la (PGC-1 ), disrupts p160/PGC-& inter-
different cell lineages. For instance, there are three BAF60 action, leading to PGC-&-mediated transcription of genes
isoforms (a, b and c) described to dft&4], with BAF60c involved in the regulation of metabolic processes, (e.g. mito-
abundantly expressed in cardiac and skeletal mu§tts]. chondrial biogenesis and respiration) in response to cytokines
Genetic ablation of BAF60c in mice selectively impairs car- or -adrenergic signalinfl59]. Finally, a role of p38 in the
diac and skeletal muscle differentiation during embryogen- control of post-transcriptional events is suggested by the abil-
esis[155], suggesting that BAF60c is a key molecule in the ity of p38 kinases to attenuate the decay of mMRNA containing
activation of differentiation genes of the myogenic lineage. AU-rich elements (ARE)160]. As several muscle transcripts
We have observed that p38and 3 kinases preferentially  contains ARE, itis possible that p38 regulates the stability of
phosphorylate BAF60c in vitro (SVF and PLP unpublished nascent transcripts. Given the ability of 38 kinases to affects
results). Thus, an important function of BAF60c could be to multiple events of muscle gene transcription, from transcrip-
receive the information transmitted by cytoplasmic cascadestosome assembly to mRNA stabilization, they can be defined
(e.g. the p38 signaling) and broadcast it to other SWI/SNF the “master-regulators of the muscle-gene factory”.
members and chromatin-bound proteins, thereby allowing  While the role of the p38 pathway in promoting differenti-
the myogenic transcriptosome to adopt the conformation per-ation of muscle cell cultures is well established, the biological
missive for transcription. In this regard, BAF60c could be an impact of the p38 pathway should be considered within the
interesting target for interventions aimed at selectively mod- context of biological systems, such as somitogenesis and
ulating muscle-gene expression. muscle regeneration, which are regulated by a more com-
SWI/SNF is also implicated in the regulation of cell cycle plex environmental network—e.g. lateral cues from other
arrest, when recruited on promoters of proliferation genes tissues. In this respect, it is worthy to note that one in vivo
(e.g. cyclins), via interaction with pRt56,157] In this con- experiment of p38 blockade, by its soluble inhibitor SB,
text, SWI/SNF provides an inhibitory function on transcrip- performed in limb buds, produced a surprising increase in
tion of target genes, as part of the pRb-associated complex,myotube formation—an effect reproduced by co-culturing
which establishes the cell cycle withdrawal during terminal myoblasts with limb mesenchimal cell$61]. In contrast,
differentiation[158]. Given the cytostatic activity of the p38 de Angelis et al. reported that transplacental injection of the
pathway in differentiating myoblas{d440,141] it will be p38 inhibitor SB203580 resulted in the inhibition of myo-
interesting to determine whether p38 kinases also regulategenic differentiation in somite cultures and in embryos in
SWI/SNF recruitment into the pRb-associated co-repressoryvivo [162]. The same study also shows that the commitment
complex. to the myogenic lineage is not appreciably affected by p38
A careful analysis of the interactions reported between inhibition, since the activation of an early marker of myogenic
MRFs, MEF2 and chromatin-modifying enzymes, and their commitment (Myf5) occurs normally when p38 signaling is
regulation by p38 kinases, leads to the formulation of a inhibited. Collectively, the results reported above underscore
stepwise model of assembly of the myogenic transcrip- the importance of the microenvironment in directing the final
tosome through distinct interactions. MyoD binding to effect of the p38 pathway in physiological contexts and indi-
p300, SCR1la or p/Cip occurs in vitro, in the absence cates that the p38 pathway can provide an ambiguous signal
of E12/47 and MEF2 proteing104,105,107,111] and for muscle differentiation. The timing of p38 activation, the
MyoD/acetyltransferase interactions are detectable already insignal-dependent upstream p38 regulators, and the parallel
myoblastg105,107,108,111}suggesting that MyoD homo-  pathways activated along with p38 kinases, all contribute to
dimers can bind acetyltransferases. The N-terminal of MyoD determine the final impact of the p38 signaling on the myo-
appears to accommodate simultaneous interactions withgenic program. Consistent with such a context-dependent
p300, PCAF, SRC and p/CIR07,108,111] As p38 block- versatility of the p38 pathway, p38-mediated phosphoryla-
ade prevents MyoD-E47 interaction, but is permissve for tion can inhibit the function of MRF4163] and E47[145].
MyoD binding to the DNA[57,59] it is likely that in And DNA damage-activated p38 promotes p300 degrada-
the absence of p38 signaling, MyoD homo-dimers form tion, leading to down-regulation of muscle gene expression
interactions with acetyltransferases on target promoters. Inin cardiomyocyte$164]. Cross-talk with other cytoplasmic



606 S.V. Forcales, P.L. Puri/ Seminars in Cell & Developmental Biology 16 (2005) 596611

Differentiation cues

Proliferation Proliferation
by mitogens with IGF1 MKK6
P LA P
o
Deacetyl.
Inhib. D.I -

Proliferation with hypoacetylated Proliferation with hyperacetylated Cell cycle arrest and
muscle promoters muscle promoters - Ready-to-Go Terminal differentiation

Fig. 3. Different stages of myoblast proliferation, with or without hyperacetylated promoters. In myoblasts exposed to mitogens the preseatdaskedea

on muscle regulatory regions inhibit local hyperacetylation. Differentiation is induced by mitogen withdrawal and exposure to IGF or insbibskerite of

p38 activity (e.g. by experimental p38 blockade with SB), IGF- or insulin-mediated signaling is sufficient to promote the hyperacetylation eggulatoky

regions; however, cell cycle arrest and gene transcription are not induced until the p38 pathway is induced (or is resumed upon SB removal). Thus, the
simultaneous interference with p38 signaling to the chromatin of muscle genes and exposure to IGF1 can expand of population of proliferatisg myoblas
which are “primed” for differentiation by hyperacetylation at muscle loci. An equivalent effect can be obtained by exposing myoblasts to eégahiijtas.

This model can explain the enhanced differentiation potential of IGF- or TSA-treated muscle cells, and can inspire pharmacological strategies tioeen
efficiency of muscle regeneration.

cascades also contributes to determine the biological out-signaling and p38 pathway during regeneration should be
come of the p38 signaling. The mutually exclusive pattern defined by future studies, as it could provide an interesting
of activation of ERK and p38 pathways during myoblast- target for pharmacological interventions aimed at expanding
to-myotube transitiofil 9] suggests that these two cascades a large population of myoblasts “primed” by IGF to differen-
can regulate each other’s activity. Indeed, p38 pathway cantiate upon the activation of p38 kinasésd. J). It is obvious
inhibit the Ras pathwafd 65], and MKK6/3-dependent acti-  that chromatin targets of the p38 pathway, such as BAF60,
vated p38 kinases inhibit ERK signalifig6]. On the other are interesting candidates for screening directed toward the
hand, in myoblasts, mitogen-activated Ras signaling canidentification of agents that can modulate the efficiency of
down-modulate or re-direct the p38 pathway toward other muscle regeneration.
functions[167]. Furthermore, differentiation-activated p38 Finally, it will be interesting to establish the relationship
induces NkB-activity in differentiating myoblastR7]. between signal transduction pathways and novel regulators
By contrast, p38 and IGF1/Pi3K pathways proceed as par- of gene expression, such as micro-RNA, and how the nuclear
allel pathways in the cytoplasm of differentiating myoblasts architecture changes in response to environmental cues.
[19,127] As these two pathways appear to converge in
the nucleus, their functional interdependence could be envi-
sioned at the chromatin level. In this respect, it is interesting 7. Conclusion
to note that p38 blockade in myoblasts exposed to IGF1-
activated signaling, without the presence of mitogens, allows  The results summarized in this review indicate the poten-
the partial formation of a myogenic transcriptosome, contain- tial importance of transcription modulation in regenerative
ing muscle-transcription factors and acetyltransferases, andmedicine. Deacetylase inhibitors provide an example of phar-
leading to the hyperacetylation of muscle promotersin prolif- macological interference on chromatin events (e.g. deacety-
erating myoblast7]. This evidence suggests that the ability lation) exploitable for therapeutic purposes. Exposure of
of IGF1 to stimulate both proliferation and differentiation of myoblasts to deacetylase inhibitors leads to the anticipated
muscle cell§168] s strictly dependent on the timing of p38 hyperacetylation of both MyoD and the histones surrounding
activation. In the absence of p38 signaling, IGF1 stimulates MyoD-binding sites, and results in the earlier transcription
proliferation of myoblasts, while promoting hyperacetylation of muscle genes and in the formation of hypernucleated
at muscle-gene regulatory elements. Upon p38 activation, myotubes with an increased sif€70]. A relevant target
SWI/SNF chromatin recruitment imparts to the myogenic of deacetylase inhibitors in muscle cells is the follistatin
transcriptosome the competence to activate gene transcripgene [171]. Follistatin is the physiological antagonist of
tion, and promotes cell cycle arrest. Thus, the activation of myostatin—a negative regulator of muscle mass and regen-
the p38 pathway during myoblast differentiation can convert eration[172,173] Muscles exposed to deacetylase inhibitors
the IGF1- from a mitogenic signaling into a pro-myogenic express high levels of follistatin and form myofibers larger
pathway. Interestingly, induction of p38 kinases is detectable than normal[171]. Deacetylase inhibitors are used in the
in activated satellite celld69], suggesting that this sequence clinical practice[174,175] and can be therefore exploitable
of events can determine the efficiency of satellite-mediated for pharmacological modulation of muscle mass. Studies
muscle regeneration. The timing of activation of the IGF1 on mouse models of neuromuscular diseases showed that
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myostatin blockade counters the dystrophic phenotype in
MDX mice [176,177] Future studies will determine the
suitability of deacetylase inhibitors as a potential pharma-
cological agent to increase muscle mass in the treatment
of muscular disorders via follistatin-mediated blockade of
myostatin.

It should be emphasized that targeting cellular deacety-

lases generally affects gene expression, hence can gen-

erate several side effects. Therefore, the identification of
promoter-specific targets of signaling pathways is imperative
to increase the selectivity of pharmacological interventions.
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